Analyses of Developmental Rate Isomorphy in Ectotherms: Introducing the Dirichlet Regression

نویسندگان

  • David S. Boukal
  • Tomáš Ditrich
  • Dmitry Kutcherov
  • Pavel Sroka
  • Pavla Dudová
  • Miroslav Papáček
  • Hans G. Dam
چکیده

Temperature drives development in insects and other ectotherms because their metabolic rate and growth depends directly on thermal conditions. However, relative durations of successive ontogenetic stages often remain nearly constant across a substantial range of temperatures. This pattern, termed 'developmental rate isomorphy' (DRI) in insects, appears to be widespread and reported departures from DRI are generally very small. We show that these conclusions may be due to the caveats hidden in the statistical methods currently used to study DRI. Because the DRI concept is inherently based on proportional data, we propose that Dirichlet regression applied to individual-level data is an appropriate statistical method to critically assess DRI. As a case study we analyze data on five aquatic and four terrestrial insect species. We find that results obtained by Dirichlet regression are consistent with DRI violation in at least eight of the studied species, although standard analysis detects significant departure from DRI in only four of them. Moreover, the departures from DRI detected by Dirichlet regression are consistently much larger than previously reported. The proposed framework can also be used to infer whether observed departures from DRI reflect life history adaptations to size- or stage-dependent effects of varying temperature. Our results indicate that the concept of DRI in insects and other ectotherms should be critically re-evaluated and put in a wider context, including the concept of 'equiproportional development' developed for copepods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general rule for the dependence of developmental rate on temperature in ectothermic animals.

In animals that do not regulate their body temperature by the production of heat, the proportion of the total developmental time spent in a particular developmental stage does not change with temperature. In the quasi-linear region of the relationship between developmental rate and temperature, all of the developmental stages appear to have the same species-specific lower developmental threshol...

متن کامل

Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work

Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...

متن کامل

The well-temperatured biologist. (American Society of Naturalists Presidential Address).

Temperature provides a powerful theme for exploring environmental adaptation at all levels of biological organization, from molecular kinetics to organismal fitness to global biogeography. First, the thermodynamic properties that underlie biochemical kinetics and protein stability determine the overall thermal sensitivity of rate processes. Consequently, a single quantitative framework can asse...

متن کامل

Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs....

متن کامل

Thermal time: body size, food quality and the 10 C rule

Developmental rates of ectotherms (y) are often linearly related to temperature (Tc in C) within some biologically relevant range of temperatures as y = (1/S)(Tc − Tb), where Tb is the estimated temperature at zero development, and the thermal constant S is the development time multiplied by the temperature above Tb (i.e. degree days above Tb). Among similar species, it has been widely shown th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015